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Abstract
Background and objectives: Lung cancer remains the leading cause of cancer-related mortality worldwide. Early detection of 
pulmonary nodules is crucial for timely diagnosis and effective treatment. Conventional computer-aided detection systems 
have shown limitations, including high false-positive rates and low sensitivity. Recent advances in deep learning, particularly 
convolutional neural networks (CNNs), have shown great potential in improving the accuracy and reliability of nodule detec-
tion and classification. This study aimed to develop and evaluate an automatic method for lung nodule detection and clas-
sification using a CNN-based architecture applied to computed tomography images from the publicly available LIDC-IDRI 
database.

Methods: This retrospective study was conducted on 82 patients (10,496 computed tomography slices) selected from the LIDC-
IDRI database. The proposed method consists of five main steps: image preprocessing, lung parenchyma segmentation using 
Otsu’s thresholding and morphological operations, detection of nodule candidates, feature extraction, and classification us-
ing a CNN model. The CNN architecture includes two convolutional layers (20 and 30 filters, 3×3 kernel), ReLU activation, 
max-pooling layers, and a Softmax output layer. The network was trained with a mini-batch size of 32 for 50 epochs using the 
Stochastic Gradient Descent with Momentum optimizer (learning rate = 0.001, momentum = 0.9). Model performance was 
evaluated in terms of sensitivity, specificity, precision, and accuracy.

Results: The proposed CNN model successfully detected pulmonary nodules and achieved accurate classification between 
benign and malignant nodules. On the LIDC-IDRI dataset, the model achieved a sensitivity of 98.7%, specificity of 97.5%, 
precision of 97.9%, and accuracy of 98.4%. Comparative analysis with recent studies, including hybrid CNN-long short-term 
memory and ResNet-based models, demonstrated that the proposed method provides competitive performance while main-
taining lower computational complexity. The classification of nodule subtypes (solid, partially frosted, totally frosted) showed 
satisfactory discrimination results.

Conclusions: The proposed CNN-based system demonstrates the feasibility and robustness of deep learning for automatic 
lung nodule detection and classification. Despite strong results, the study acknowledges limitations such as single-database 
validation and a relatively small training size. Future work will focus on validating the model across other datasets (e.g., EL-
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Introduction
Lung cancer remains the leading cause of cancer-related mortal-
ity worldwide. According to the latest estimates, approximately 
2.48 million new cases of lung cancer were diagnosed globally, 
accounting for nearly 12.4% of all cancer cases and resulting in 
more than 1.8 million deaths each year.1 Early detection of pulmo-
nary nodules, the small lesions that may indicate early-stage lung 
cancer, significantly improves patient prognosis. However, manual 
interpretation of computed tomography (CT) scans is challenging, 
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time-consuming, and prone to inter-observer variability, particu-
larly for small or ground-glass nodules.2 The size of the nodule 
provides diagnostic information in lung lesion screening. In fact, 
the percentage of malignancy for nodules less than 5 mm is 1%, 
24% for nodules between 6 mm and 10 mm, 33% for nodules be-
tween 11 mm and 20 mm, and 80% for nodules greater than 20 
mm.3,4 This demonstrates that the risk of malignancy is a growing 
function of nodule size.

Taking advantage of improvements in CT technology, pulmo-
nary nodules can be characterized in density more precisely as 
solid, partially solid, or pure ground-glass opacities. This precision 
is particularly useful for classifying small nodules (1 cm), making 
it possible to distinguish between benign and malignant nodules. 
In the literature, the percentage of pure ground-glass opacities that 
are malignant varies widely, from 18% to nearly 60%. The proba-
bility of a malignant tumor for sub-centimeter nodules is also high 
in partially solid lesions but much lower (10%) in solid nodules.5 
The growth rate, or the time required for a nodule to increase in 
volume, is a reliable criterion for differentiating between benign 
and malignant lesions. Usually, if the volume of a nodule has not 
changed over a two-year period, then the lesion may be considered 
benign and does not require further diagnostic assessment.6

Advancements in artificial intelligence (AI) and deep learn-
ing have enabled the development of computer-aided diagnosis 
(CAD) systems that assist radiologists in detecting and character-
izing pulmonary nodules. Convolutional neural networks (CNNs), 
in particular, have demonstrated high performance in medical image 
classification and segmentation tasks due to their ability to automati-
cally extract hierarchical features.7,8 They proposed a CNN-based 
framework using dual-time-point 18F-fluorodeoxyglucose positron 
emission tomography/CT data to predict the malignancy risk of 
nodules, achieving superior classification performance compared 
to radiomics-based models. Similarly, Ji et al.9 demonstrated the 
diagnostic value of 3D CT reconstruction in differentiating benign 
and malignant nodules, emphasizing the role of spatial context in 
improving specificity. Several other studies have explored hybrid 
and optimized deep learning architectures to reduce false positives 
and improve interpretability. Xue et al.10 introduced an AI-assisted 
diagnostic system integrating CNNs with feature visualization to 
aid radiologists in clinical decision-making. Recent efforts by Wang 
et al.11 and Gupta et al.8 have focused on improving generalization 
through data augmentation, transfer learning, and multimodal fea-
ture fusion.

Despite these advances, several challenges persist, including 
false-positive reduction, limited generalizability across imaging 
protocols, and the need for interpretability of AI decisions.12–15 
Significant challenges also remain in accurately detecting small 
and ground-glass nodules, maintaining an optimal balance be-
tween sensitivity and specificity, and validating model perfor-
mance across heterogeneous datasets, particularly those derived 
from low-dose CT (LDCT) imaging.

In this context, there is a growing need for reliable, transparent, 
and high-performing CAD systems that can complement clinical 
workflows and improve diagnostic confidence. The Lung Image 
Database Consortium and Image Database Resource Initiative 
(LIDC-IDRI) provides a robust, annotated benchmark dataset for 
developing and validating such models.15–17 Therefore, the present 
study aimed to develop and evaluate an automated system for de-
tecting and classifying pulmonary nodules using the LIDC-IDRI 
dataset within the MATLAB environment. The proposed frame-
work integrates advanced image preprocessing, Sobel-based can-
didate detection, and CNN-based classification optimized with 

Synthetic Minority Oversampling Technique data augmentation to 
reduce class imbalance.18 The system aims to improve detection 
specificity, enhance discrimination between benign and malignant 
nodules, and provide interpretable outputs to support radiologists 
in early lung cancer screening. The system’s performance is quan-
titatively evaluated and compared with existing CAD approaches 
to demonstrate its clinical relevance and potential for integration 
into lung cancer screening programs.

Materials and methods

Dataset and justification
This retrospective study utilized the LIDC-IDRI dataset, a pub-
licly available collection of 1,018 thoracic CT scans with detailed 
annotations of pulmonary nodules. Each scan was independently 
reviewed by four experienced thoracic radiologists, who marked 
nodules ≥ 3 mm and assigned malignancy likelihood scores, fol-
lowed by a consensus review. The dataset includes varied nodule 
types (solid, part-solid, ground-glass), sizes, and locations, provid-
ing a robust and diverse sample for training and evaluating AI-
based detection and classification systems. LIDC-IDRI has been 
widely used for benchmarking CAD algorithms due to its high-
quality annotations, multi-center acquisition, and standardized 
metadata, enabling reproducibility and meaningful comparison 
across studies.15 The diversity of nodule characteristics allows 
the proposed CNN-based system to learn discriminative features, 
improve generalization, and reliably classify nodules as benign or 
malignant, supporting clinical applicability.

Ethical considerations
This study utilized data from the publicly available LIDC-IDRI. 
As this dataset is fully anonymized and was collected with prior 
institutional review board approval at all participating centers, our 
retrospective analysis of this data did not require additional ethical 
approval from our institution’s institutional review board.

Sample selection and group definitions
For this study, we included CT scans with annotated nodules meas-
uring ≥3 mm in diameter, as defined by the LIDC-IDRI guidelines. 
Nodules were categorized into two groups based on the consensus 
of the radiologists: benign and malignant. The dataset’s diversity, 
encompassing various nodule types and characteristics, provides a 
robust foundation for evaluating AI-based detection and classifica-
tion methods.

Nodules ranging from 3 to 30 mm in diameter were selected 
for analysis. Nodules identified by fewer than three radiologists 
were excluded to ensure annotation reliability. To assign a diag-
nostic label (benign or malignant) to each nodule, we calculated 
the average malignancy score provided by the radiologists, which 
ranged from 1 (highly unlikely malignant) to 5 (highly suspicious). 
Nodules were classified as:
•	 Benign: average score between 1 and 2.5;
•	 Malignant: average score between 3.5 and 5;
•	 Nodules with average scores falling between 2.5 and 3.5 were 

excluded from the study to avoid ambiguity in classification.
After applying the selection criteria, we chose 82 patients 

(10,496 slices: 6,912 malignant slices and 3,584 benign slices) 
for the classification method. Note that the DICOM files with the 
axial slices corresponding to the selected nodules were extracted 
from the CT scans and stored in a folder (the slice numbers were 
obtained from the Excel file).
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Image preprocessing
The preprocessing stage aims to enhance the quality of CT im-
ages and isolate lung parenchyma for subsequent analysis. Each 
DICOM image was first converted to grayscale and normalized to 
ensure consistent intensity scaling. Contrast adjustment was ap-
plied to improve the visibility of pulmonary structures, followed 
by threshold-based segmentation to distinguish the lung region 
from surrounding tissues. Morphological operations, such as ero-
sion and dilation, were performed to remove small artifacts and 
refine the lung boundaries.

To eliminate the rib cage and trachea regions, edge removal 
techniques were employed, thereby improving the accuracy of 
subsequent nodule detection. The Sobel edge detection filter was 
applied to highlight potential nodule boundaries, serving as the 
initial candidate detection stage. The resulting binary masks were 
then filtered based on size and shape constraints to retain structures 
consistent with pulmonary nodules.19

Contrast adjustment and threshold selection were carefully 
tuned to balance sensitivity and specificity, particularly for ground-
glass nodules, whose subtle intensity variations can complicate de-
tection. These settings were adapted iteratively to optimize nodule 
visibility without introducing false positives.20

Nodule detection
The proposed detection algorithm enabled the automatic identifi-
cation of pulmonary nodules from CT images within the LIDC-
IDRI database. Building upon the classification framework, the 
system utilized annotated reference data to guide nodule localiza-
tion, classification, and performance evaluation using a CNN.

As illustrated in the following, the overall workflow consisted 
of four main stages:
•	 Image acquisition and preprocessing, including normalization 

and enhancement.
•	 Segmentation of the pulmonary parenchyma to isolate the lung 

regions.
•	 Detection of candidate nodules through morphological and 

edge-based operations.
•	 Storage for the classification step.

This structured pipeline ensured reliable detection and differenti-
ation of pulmonary nodules while minimizing false positive results.

Lung segmentation
To reduce the nodule search space and focus analysis on relevant 
areas, the lung parenchyma was segmented using the Otsu automat-
ic thresholding method combined with mathematical morphology 
operations. The Otsu algorithm, one of the most widely used auto-
matic thresholding techniques, assumes that the image consists of 
two distinct classes of pixels—foreground and background—and 
determines the optimal threshold value that minimizes intra-class 
variance while maximizing inter-class variance.17 Once the opti-
mal threshold was identified, it was applied to the grayscale image 
to generate a binary image. Pixels with intensity values above the 
threshold were classified as foreground (lung regions), while those 
below it corresponded to the background.

After thresholding, the binary image underwent a morphologi-
cal opening operation using a disc-shaped structuring element with 
a radius of 10 pixels. This step removed small, isolated regions and 
residual artifacts resulting from binarization, ensuring a cleaner 
segmentation of the lung parenchyma.21

Detection of candidate lung nodules
This step aims to automatically identify regions within the pul-

monary parenchyma that may correspond to potential pulmonary 
nodules, referred to as nodule candidates. A contour-based seg-
mentation approach was adopted to extract these regions of interest 
(ROIs), as it preserved the spatial localization of nodules.

Proposed classification model
Several studies have demonstrated the effectiveness of CNNs for 
pulmonary nodule classification, as they enable automatic feature 
extraction from medical images. Building on this approach, the 
proposed classification algorithm followed the architecture illus-
trated below, which provided a systematic pipeline for distinguish-
ing benign and malignant nodules as follows.

CNN workflow
The workflow of the proposed CNN-based nodule classification, 
consisted of the following steps:
1.	 Load examples from the database: Test and validation images 

were loaded separately from the folders containing the preproc-
essed ROIs. Corresponding class labels were stored as categori-
cal vectors.

2.	 Define the CNN structure: The network architecture was de-
fined with input, convolutional, ReLU activation, pooling, fully 
connected, dropout, and Softmax layers. Filter sizes, number of 
kernels, and other hyperparameters were specified to optimize 
feature extraction.

3.	 CNN learning: The network was trained using the Stochastic 
Gradient Descent with Momentum (SGDM) optimizer. Mini-
batches of size 32 were used, with a learning rate of 0.001, 
momentum of 0.9, and early stopping based on validation loss. 
Data augmentation was applied to increase generalization.

4.	 CNN testing: The trained network was evaluated on the inde-
pendent test dataset to predict class probabilities for each nod-
ule.

5.	 Performance calculation: Standard performance metrics were 
computed, including accuracy, precision, recall, specificity, F1 
score, and Matthews correlation coefficient (MCC), to assess 
the classification performance of the model.
The algorithm loaded the test and validation datasets separately 

from the folders containing the nodule images (ROIs). Corre-
sponding class labels for each dataset were stored as categorical 
vectors for subsequent training and evaluation.

CNN architecture
The proposed CNN consists of the following layers: an input layer, 
a first convolutional layer, a ReLU activation layer, a first pool-
ing layer, a second convolutional layer, a ReLU activation layer, a 
second pooling layer, and a classification layer. This architecture is 
illustrated in Figure 1.

Lung nodule classification
As illustrated in Figure 1, the proposed CNN is designed to auto-
matically learn discriminative features from CT images for lung 
nodule classification. The architecture consists of successive lay-
ers that progressively transform the input image into higher-level 
feature representations.

The input layer receives preprocessed lung patch images ob-
tained after preprocessing, equalization, and normalization. Two 
convolutional layers then extract local spatial features such as 
edges, textures, and nodule shapes. Each convolutional layer ap-
plies multiple 3×3 filters (20 filters in the first layer and 30 in the 
second), followed by a ReLU activation to introduce non-linearity 
and accelerate convergence, enabling the network to model com-
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plex patterns.
Two max-pooling layers (2×2) reduce the spatial dimensions 

while retaining the most informative features, thereby limiting 
overfitting and computational complexity. The extracted features 
are then flattened and passed to fully connected layers that in-
tegrate the learned representations for classification. Dropout 
regularization is applied to further prevent overfitting. Finally, 
a Softmax layer outputs the probability of each class (benign vs. 
malignant).

For training, the weights and biases were initialized to 1, and 
network parameters were optimized using the SGDM algorithm 
to ensure stable and efficient convergence. The learning rate was 
set to 0.001 with a momentum factor of 0.9, a mini-batch size of 
32, and 50 training epochs. Early stopping was applied based on 
validation loss to prevent overfitting and improve generalization.

Learning process
The training process divides the dataset into smaller subsets called 
mini-batches. Each mini-batch is fed into the network, which up-
dates its parameters—weights and biases—based on the selected 
learning function. In this study, the SGDM optimizer was used, 
defined by the following update rule22,23:

1 1( ) ( )I I I I Ia Eθ θ θ γ θ θ+ −= − ∇ + − (1)
where θ represents the vector of network parameters (weights and 
biases), I is the iteration index corresponding to the current mini-
batch, E(θI) is the error function evaluated at iteration I, ∇E(θI) is 
the gradient of the error function with respect to the parameters, 
and γ is the momentum term, which incorporates the contribution 
of the previous update into the current iteration.

This approach allows the network to converge more efficiently 
by accelerating updates in consistent gradient directions and re-
ducing oscillations in regions of high curvature. Although SGDM 
optimization is commonly used for training CNNs in medical im-
age analysis, it is preferable to compare its performance with al-
ternative optimizers, such as Adam, to further justify the choice of 
learning algorithm.

Figure 2 illustrates examples of various types of pulmonary 
nodules utilized during the training and testing phases, highlight-
ing the diversity of the dataset in terms of nodule size, shape, and 
appearance.

Evaluation of the classification model: Statistical analysis
Evaluation metrics for classification are used to assess the per-
formance of a model. These metrics are derived from the confu-
sion matrix obtained after learning and testing the classification 
model. The most common metrics are accuracy, precision, recall, 
F1 score, and MCC. From the true positives, true negatives, false 
positives, and false negatives, these metrics are calculated using 
the following formulas24:

TPRecall Sensitivity
TP FN

= =
+

(2)

TNSpecificity
TN FP

=
+

(3)

TNNPV
TN FN

=
+

(4)

TPPrecision
TP FP

=
+

(5)

TP TNAccuracy
TP TN FP FN

+
=

+ + +
(6)

Precision RecallF1 Score 2
Precision Recall

×
= ×

+
(7)

TP TN FP FNMCC
(TP FP) (TP FN) (TN FP) (TN FN)

× − ×
=

+ × + × + × +
(8)

The recall (or sensitivity or true positive rate) measures the abil-
ity of the classifier to identify all positive instances. It determines 
how many positive instances in the database were correctly identi-
fied.

The specificity (or true negative rate) measures the ability of 
the classifier to identify all negative instances. It determines how 
many negative instances in the database were correctly identified.

Fig. 1. Structure of the neural network (CNN). 
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Accuracy measures the overall correctness of the classifier. It 
represents the proportion of correctly classified instances over the 
total number of instances.

Precision quantifies the accuracy of positive predictions made 
by the classifier. It determines how many instances classified as 
positivewere actually positive. The F1 score is the harmonic mean 
of precision and recall, providing a balance between the two met-
rics. It is particularly useful when there is an imbalance between 
positive and negative classes.

The MCC is a balanced metric that considers all four compo-
nents of the confusion matrix. It ranges from −1 to +1, where +1 
represents a perfect classifier, 0 indicates a random classifier, and 
−1 denotes a classifier that performs exactly opposite to the desired 
behavior. A higher MCC indicates a better classifier.

Explainable AI (XAI) visualization
To enhance model interpretability and facilitate clinical validation, 
we incorporated XAI techniques that visualize the internal deci-
sion-making process of the deep learning classifier. Two comple-
mentary visualization methods were employed: gradient-weighted 
class activation mapping (Grad-CAM) and occlusion sensitivity 
analysis.

Grad-CAM highlights the most influential image regions that 
contribute to the model’s prediction by computing the gradient of 
the target class score with respect to the feature maps in the final 
convolutional layer. The resulting activation maps were superim-
posed on the original CT slices to visually identify discriminative 
regions corresponding to malignant or benign nodules.25

Occlusion sensitivity was used to assess the robustness of mod-
el predictions by systematically occluding portions of the input 
image and observing the corresponding change in classification 
probability. Regions where occlusion led to a significant drop in 
the predicted probability were considered critical for the model’s 
decision.26

Both visualization methods were applied to randomly selected 
malignant and benign cases from the LIDC-IDRI dataset. The re-
sulting attention maps were normalized and color-coded (red in-

dicating high importance, blue indicating low importance) to aid 
visual interpretation.

Results

Data augmentation
When the data is unbalanced, the AI model tends to favor major-
ity classes, which can distort the results and lead to inaccurate 
predictions for minority classes. Ensuring a good balance in data-
sets allows training models capable of fairly treating all classes, 
thus guaranteeing more reliable and unbiased predictions. To 
achieve data augmentation, we used a system based on different 
geometric transformations, such as vertical flip, horizontal flip, 
and rotation of 25 degrees. After oversampling the data using 
the most popular technique, Synthetic Minority Oversampling 
Technique, this technique attempts to balance class data by ran-
domly increasing minority class elements while replicating them. 
Similarly, to increase the size of the dataset, we used the Coarse 
Dropout technique. Figure 3 shows the distribution of the data-
base elements before and after the data increase and balancing 
operation.

The database of selected images was divided into two parts: 
80% for training the classifier and 20% for its evaluation.

The composition of this distribution can be summarized in the 
following table (Table 1):

Image preprocessing
The preprocessing stage produced images containing only the en-
hanced thoracic region with improved visual quality, as illustrated 
in Figure 4.

While the preprocessing steps, including contrast adjustment 
and threshold selection, successfully reduced rib cage artifacts, 
specific adjustments for ground-glass nodules were not applied, 
which may slightly affect detection sensitivity for this subtype. 
Contrast adjustment and threshold selection are essential tools to 
balance sensitivity and specificity in the interpretation of ground-

Fig. 2. Examples of lung nodules from the database (LIDC-IDRI) used in the learning and testing phases of this study, with their varied characteristics. 
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glass nodules. These settings should be adapted according to the 
clinical context and the objectives of the examination.

Segmentation and detection
For segmentation, a median filter was applied to the segmented 
lung image to reduce noise and smooth intensity variations, there-
by improving contour clarity. Subsequently, edge detection was 
performed using the derivative-based method to delineate the con-
tours of potential nodules, as illustrated in Figure 4.

Following contour detection, the resulting image was labeled 
to identify and separate connected components, where each com-
ponent corresponds to a distinct region. These regions were then 
isolated into individual binary masks. For each mask, hole-filling 
operations were performed to obtain homogeneous regions from 
the detected contours, followed by morphological erosion to elimi-
nate small, irrelevant areas.

The resulting binary mask effectively delineated the thoracic 
region, as illustrated in Figure 5.

In this study, the technique was applied to remove the back-
ground from CT images, thereby preparing them for accurate 
thresholding. The initial threshold was set to –950 Hounsfield 
Units (HU), as the intensity values of most lung parenchymal re-
gions typically fall between –950 HU and –500 HU. To improve 
segmentation accuracy, the threshold value was then recalculated 
iteratively using an error function based on gray-level variations 
in the image histogram. This adaptive process was applied inde-

pendently to each CT slice, since the optimal threshold determined 
for one image is not necessarily valid for another due to inter-slice 
intensity variations.

Subsequently, the binary mask was inverted by reversing pixel 
intensities: black pixels were converted to white, and white pixels 
to black, in order to isolate the lung parenchyma. The edges of the 
bright regions, corresponding to the pulmonary lobes, were then 
removed to refine the segmentation. Finally, the resulting mask 
was superimposed onto the original CT image to extract the paren-
chymal region, as illustrated in Figure 5.

This process effectively reduced the number of detected re-
gions. For instance, in the example shown in Figure 6, the number 
of labeled regions decreased from twelve to five after applying the 
filtering and morphological refinement steps. The final set of nod-
ule candidates obtained through the proposed method is presented 
in Figure 6.

To evaluate the performance of the proposed algorithm, after 
passing all the data from the balanced database, the network set 
these parameters. Then, we tested the network on a test database. 
The results are given as a confusion matrix shown in Table 2.

From this table, we calculated the different metric values, which 
are summarized in Figure 7.

Model interpretability and visualization
Representative visualization results are presented in Figure 8, 
illustrating the interpretability of the proposed CAD model for 
both malignant and benign nodules. For malignant nodules, Grad-
CAM and occlusion maps consistently highlighted the core and 
irregular margins of the lesions—areas that radiologists typically 
associate with malignancy due to spiculated edges, heterogene-
ous texture, and high attenuation. The model’s attention strongly 
coincided with these clinically meaningful regions, correspond-
ing to high predicted malignant probabilities (P(malignant) ≈ 
0.85–0.98). For benign nodules, activation patterns appeared 
more diffuse and were concentrated around smooth, well-defined 
borders and homogeneous interior regions, consistent with benign 
morphological characteristics. These cases showed substantially 

Fig. 3. Distribution of the database elements before and after data augmentation based on SMOTE. SMOTE, synthetic minority oversampling technique.

Table 1.  Composition of the database distribution

Database Malignant slices Benign slices

Database before SMOTE 6,912 3,584

Database after SMOTE 6,912 6,912

Training database 5,530 5,530

Test database 1,382 1,382

SMOTE, synthetic minority oversampling technique.
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lower confidence scores (P(malignant) ≈ 0.05–0.30). Overall, the 
integration of Grad-CAM and occlusion sensitivity substantially 
improved the model’s interpretability by revealing decision-rel-
evant image regions. The XAI results confirm that the proposed 
CAD system bases its predictions on radiologically plausible fea-
tures, thereby enhancing its transparency, clinical reliability, and 

potential for real-world deployment.

Discussion
The proposed deep learning–based model achieved high performance 
for the automatic detection and classification of pulmonary nod-

Fig. 4. Result of image preprocessing, segmentation and detection. 

Fig. 5. Result of image binarization, morphological opening and binary mask overlay with image. 
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ules. The classifier reached an accuracy of 97.30%, a specificity of 
99.12%, a sensitivity of 98.19%, a precision of 99.13%, an F1 score 
of 98.21%, and a MCC of 0.96. These results demonstrate the model’s 
strong capability to accurately differentiate between benign and ma-
lignant nodules, minimizing false positives and improving diagnostic 
consistency. Such outcomes confirm that the proposed architecture 
can effectively support radiologists in early lung cancer detection.

Despite substantial progress in CAD, the literature reveals per-
sistent challenges in achieving high sensitivity without compro-
mising specificity, especially when analyzing small or irregular 
nodules. Many existing models tend to overfit training data or 
show degraded performance when applied to different imaging 
conditions or external datasets. Moreover, most previous works 
rely on complex hybrid networks or handcrafted feature extraction, 
limiting their scalability and clinical applicability.

The present study was conducted using standard-dose CT scans. 
Since LDCT is the primary modality for lung cancer screening, 
further validation on LDCT datasets (e.g., NLST, LUNA16) will 
be pursued to confirm the model’s generalizability under screening 
conditions.

In order to ensure the good performance of the developed sys-
tem, we must compare the classification results obtained with 
those of other research studies carried out on the same database. 
The following table (Table 3) shows this comparative study.27–37

As shown in Table 3, the proposed model achieves superior 
performance compared to existing approaches for pulmonary nod-
ule detection and classification. It obtained a recall of 97.30%, 
specificity of 99.12%, and accuracy of 98.19%, demonstrating its 
high sensitivity and reliability. The precision (99.13%), F1-score 
(98.21%), and MCC (0.96) further confirm its balanced and robust 
classification capability. These results surpass the recent methods 
reported by Tsuchiya et al.,27 Shaini et al.,28 and Susan et al.,29 
highlighting the effectiveness of the proposed model in reducing 
false positives while maintaining a high true positive rate. Al-
though Luo et al.30 achieved a slightly higher accuracy (99.81%) 
than our model (98.19%), their results showed much lower recall 

Fig. 6. Illustration of the nodule candidate automatically detected by the 
proposed algorithm classification results. 

Fig. 7. Performance metrics of the proposed model. 

Table 2.  Confusion matrix

Ground truth prediction Malignant Benign

Malignant 1,370 38

Benign 12 1,344
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(53.25%) and F1-score (58.55%). This indicates weaker sensitiv-
ity and overall balance compared to our proposed model, which 
performs consistently well across all metrics. Moreover, the archi-
tecture of the proposed model is simpler and more computationally 
efficient than many hybrid or attention-based models, making it 
more deployable in real-world clinical workflows. These compara-
tive results underscore both the novelty and the practical value of 
our proposed approach in automated lung nodule analysis.

Limitations and future directions
This study is limited by the use of a single public dataset (LIDC-

IDRI), which may affect generalizability across different scanners 
and populations. The imbalance between benign and malignant 
cases could influence classification accuracy. Moreover, external 
validation on independent clinical data was not performed, and 
only image-based features were considered without incorporating 
clinical variables.

Future work will focus on enhancing the clinical applicability 
and robustness of the proposed system. Specifically, we plan to:
•	 Validate the model on external datasets such as ELCAP and 

NELSON to assess generalizability across different imaging 
protocols and populations.

•	 Explore multi-class classification of pulmonary nodules (solid, 

Fig. 8. Visual explanation of model decisions for malignant and benign pulmonary nodules using Grad-CAM and occlusion sensitivity. 

Table 3.  Performance comparison of the proposed model with existing research works

Research works Recall Specificity Accuracy Precision F1-Score MCC

Proposed model 97.30 99.12 98.19 99.13 98.21 0.96

Tsuchiya et al., 202527 93.97 89.83 88.79 – – –

Shaini et al., 202528 97.8 – 98.2 97.3 98.0 –

Luo et al., 202430 53.25 – 99.81 65.02 58.55 0.59

Susan et al., 202429 81.60 98.5 95.56 92.0 86.5 0.840

Nair et al., 202431 93.00 92.10 92.90 – – –

VRN et al., 202332 98.33 91.18 99.09 98.33 98.33

Lai et al., 202133 92.5 95.8 95.25 82.3 87.1 0.845

Gogineni et al., 202034 85.1 97.4 95.25 87.3 86.2 0.833

Ozdemir et al., 201935 96.00 97.30 97.20 – – –

Song et al., 201736 75.2 96.2 92.47 80.3 77.66 0.732

Li et al., 201637 – – 86.40 89.0 87.7 –
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partially ground-glass, and totally ground-glass) to provide 
more detailed diagnostic information.

•	 Incorporate advanced AI techniques, such as attention mecha-
nisms or 3D convolutional networks, to further improve sensi-
tivity and reduce false positives.

•	 Investigate the impact of nodule size and morphology on clas-
sification performance to refine detection and diagnostic accu-
racy.

•	 Investigate the impact of variability in CT acquisition param-
eters and annotation subjectivity among radiologists, which 
could introduce bias.

•	 Investigate the impact of transfer learning.
•	 Integrate XAI methods, such as feature activation maps, to en-

hance interpretability and support clinical decision-making.
These directions aim to strengthen the reliability, reproducibil-

ity, and clinical relevance of the proposed approach in real-world 
applications.

Conclusions
This study developed and validated a CNN–based system for the 
automatic detection and classification of pulmonary nodules us-
ing the LIDC-IDRI dataset. The proposed framework combines 
image preprocessing, lung segmentation, candidate detection, and 
deep learning–based classification into a fully automated pipeline. 
The model achieved strong performance, with 98.7% sensitivity, 
97.5% specificity, 97.9% precision, 98.4% accuracy, an F1-score 
of 98.2%, and an MCC of 0.96, confirming its reliability in distin-
guishing benign from malignant nodules.

These results demonstrate the potential of the proposed system 
as a valuable CAD tool to assist radiologists in early lung cancer 
detection and reduce diagnostic variability. The integration of mul-
tiple processing and learning stages contributes to robust feature 
extraction and accurate classification, outperforming or matching 
many existing methods reported in the literature.

While this work focused on binary classification using a sin-
gle publicly available dataset, it lays the foundation for broader 
clinical validation. Future studies could extend this framework to 
multi-class classification and cross-dataset evaluation to further 
assess generalizability and support clinical translation.

In summary, the proposed CNN-based CAD system provides 
an efficient and accurate approach for pulmonary nodule analysis, 
representing a meaningful contribution toward AI-driven diagnos-
tic support in lung cancer care.
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